Fibra Óptica

Fibra Óptica, qué es y cómo funciona


La fibra óptica resulta interesante porque toma un concepto muy antiguo que es la manipulación de la luz, no es otra cosa más que eso, la manipulación controlada de la luz. Si nos remontamos a la historia, los mismos egipcios controlaban la luz por medio de espejos para iluminar dentro de las increíbles pirámides… ¿Precursores de la fibra óptica?
Al ver con detalle cómo está compuesta la fibra óptica, vamos a comprender sus ventajas y desventajas, así también, tendremos una visión global de este medio. Este ejemplo es sobre un cable compuesto de muchas partes, hay que entender que hay muchos tipos de cables que se adaptan a distintas ocasiones (interior, exterior, etc.) pero tomé este como referencia porque se pueden ver con detalle que elementos puede contener un cable. Esto les servirá porque comúnmente en los catálogos de cables de fibra óptica, se especifican de que están compuestos, por lo tanto, conociendo los componentes y para que funcionan, podremos elegir al mejor cable para lo que estamos 
Estructura de una fibra óptica

Estructura de una fibra óptica

1- Elemento central dieléctrico: este elemento central que no está disponible en todos los tipos de fibra óptica, es un filamento que no conduce la electricidad (dieléctrico), que ayuda a la consistencia del cable entre otras cosas.
2- Hilo de drenaje de humedad: su fin es que la humedad salga a través de el, dejando al resto de los filamentos libres de humedad.
3- Fibras: esto es lo más importante del cable, ya que es el medio por dónde se transmite la información. Puede ser de silicio (vidrio) o plástico muy procesado. Aqui se producen los fenómenos físicos de reflexión y refracción. La pureza de este material es lo que marca la diferencia para saber si es buena para transmitir o no. Una simple impureza puede desviar el haz de luz, haciendo que este se pierda o no llegue a destino. En cuanto al proceso de fabricación es muy interesante y hay muchos vídeos y material en la red, pero básicamente las hebras (micrones de ancho) se obtienen al exponer tubos de vidrio al calor extremo y por medio del goteo que se producen al derretirse, se obtienen cada una de ellas.
4- Loose Buffers: es un pequeño tubo que recubre la fibra y a veces contiene un gel que sirve para el mismo fin haciendo también de capa oscura para que los rayos de luz no se dispersen hacia afuera de la fibra.
5- Cinta de Mylar: es una capa de poliéster fina que hace muchos años se usaba para transmitir programas a PC, pero en este caso sólo cumple el rol de aislante.
6- Cinta antillama: es un cobertor que sirve para proteger al cable del calor y las llamas.
7- Hilos sintéticos de Kevlar: estos hilos ayudan mucho a la consistencia y protección del cable, teniendo en cuenta que el Kevlar es un muy buen ignífugo, además de soportar el estiramiento de sus hilos.
8- Hilo de desgarre: son hilos que ayudan a la consistencia del cable.
9- Vaina: la capa superior del cable que provee aislamiento y consistencia al conjunto que tiene en su interior.
Ahora que sabemos cómo está compuesto un cable, vamos a ver cómo funciona. No voy a detallar matemáticamente el funcionamiento porque no es la idea, solamente voy a hablar de los dos fenómenos de la óptica que permiten la transmisión y son la frutilla de esta torta maravillosa. Igualmente en la red hay información de sobra para ampliar sus conocimientos.
Los dos principios físicos por los que la fibra funciona son la Reflexión y la Refracción. Ellos son los culpables de llevar esto adelante.
  • Refracción: es el cambio de dirección que llevan las ondas cuando pasan de un medio a otro. Sencillamente y para mejor comprensión, esto se experimenta cuando metemos una cuchara en un vaso con agua y pareciera que se desplaza dentro de este.
Reflexión de la luz en la fibra óptica
  • Reflexión: también es el cambio de dirección de la onda, pero hacia el origen. Esto sería lo que sucede cuando nos miramos en el espejo sin la reflexión, no podríamos peinarnos o afeitarnos frente al espejo.

Ahora que sabemos cuáles son los principios físicos que ocurren dentro de la fibra óptica, vamos a una figura que detalla estos fenómenos en acción:
Ya sabemos cómo funciona, así que vamos a hablar un poco de que tipos de fibra hay y para qué sirve cada una. Para hacer esto vamos a agruparlas de dos maneras. Una es la fibra monomodo y la otra es multimodo y este agrupamiento se debe en la forma en que transmiten la luz por dentro de la fibra.
  • Monomodo: se transmite un sólo haz de luz por el interior de la fibra. Tienen un alcance de transmisión de 300 km en condiciones ideales, siendo la fuente de luz un láser.
  • Multimodo: se pueden transmitir varios haces de luz por el interior de la fibra. Generalmente su fuente de luz son DIODOS de baja intensidad, teniendo distancias cortas de propagación (2 o 3 Km), pero son más baratas y más fáciles de instalar.
Llegamos al punto en que sabemos cómo es una fibra óptica, que materiales las componen y que tipos hay. Es el momento de conocer como conectarlas entre los dispositivos y cómo son las placas de red que tienen como misión “transformar” la luz en código binario (fotosensores) para que el dispositivo pueda interpretar.
Tipos de conectores de fibra óptica que van en las puntas de los cables.
  • FC que se usa en la transmisión de datos y en las telecomunicaciones.
  • FDDI se usa para redes de fibra óptica.
  • LC y MT-Array que se utilizan en transmisiones de alta densidad de datos, más que nada usado en servers o clusters storage.
  • SC y SC Dúplex se utilizan para la transmisión de datos.
  • ST o BFOC se usa en redes de edificios y en sistemas de seguridad.
Una vez que los tenemos conectados, las placas emiten luz por medio de distintos dispositivos:
  • Láser: el más potente y usado en el cable monomodo
  • LED: son baratos, no tienen mucha potencia y se usan en los cables multimodo.
Las placas de red, además de darnos la interfaz de conexión, son las encargadas de “convertir” los impulsos de luz en binarios para la comprensión de la PC. Básicamente toman los impulsos de esta manera: Impulso de Luz = 1 , oscuridad = 0. Así es como forma el binario. Igualmente para más detalles, siempre está la internet para profundizar.
Por último voy a dar, a mi forma de ver y entender, las ventajas y desventajas que valen la pena saber sobre la fibra óptica:
Ventajas:
Alto ancho de banda (pruebas dieron casi 1 TB/s), haciendo que la transmisión dependa de la capacidad de procesamiento de emisor-receptor mas que del medio (que obviamente es rapidísimo)
  • Multiprotocolo (TCP/IP, SCSI, etc.)
  • Escalable
  • Muy segura ya que no hay manera de acceder a los datos transmitidos sin romper la fibra
  • El cable es muy liviano y se corroe poco
  • La señal se pierde muy poco a lo largo del cable
Desventajas:
  • El conjunto de conectores, cable, placas, dispositivos para fibra, etc., son caros para el uso no comercial, por eso se utiliza como backbone donde se debe transmitir un gran volumen de de información a grandes velocidades.
  • La fibra es frágil, lo que complica un poco la instalación.
  • Los empalmes entre fibra son complejos, con lo cual a veces hay que contratar una empresa para realizarlo.
  • Siempre se va a necesitar un convertidor óptico-eléctrico, ya que e casi imposible tener toda una red de fibra, haciendo el costo más caro.
Creo que ya tenemos un conocimiento amplio sobre que es, como funciona y que se necesita para usar…. o no usar la fibra óptica. Creo que ya lo dije varias veces durante el artículo, pero es que quiero que quede en claro que este tema es muchísimo más amplio que estas simples y escuetas líneas.

Las fibras ópticas se pueden utilizar con LAN, así como para transmisión de largo alcance, aunque derivar en ella es más complicado que conectarse a una Ethernet. La interfaz en cada computadora pasa la corriente de pulsos de luz hacia el siguiente enlace y también sirve como unión T para que la computadora pueda enviar y recibir mensajes.
Convencionalmente, un pulso de luz indica un bit 1 y la ausencia de luz indica un bit 0. El detector genera un pulso eléctrico cuando la luz incide en él. Éste sistema de transmisión tendría fugas de luz y sería inútil en la práctica excepto por un principio interesante de la física. Cuando un rayo de luz pasa de un medio a otro, el rayo se refracta (se dobla) entre las fronteras de los medios.
El grado de refracción depende de las propiedades de los dos medios (en particular, de sus índices de refracción). Para ángulos de incidencia por encima de cierto valor crítico, la luz se refracta de regreso; ninguna función escapa hacia el otro medio, de esta forma el rayo queda atrapado dentro de la fibra y se puede propagar por muchos kilómetros virtualmente sin pérdidas. En la siguiente animación puede verse la secuencia de transmisión.









APLICACIONES

Comunicaciones con fibra óptica
La fibra óptica se emplea como medio de transmisión en redes de telecomunicaciones ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio y algunas veces de los dos tipos. Por la baja atenuación que tienen, las fibras de vidrio son utilizadas en medios interurbanos.

Sensores de fibra óptica
Generalmente, se hace una distinción básica entre sensores intrínsecos y sensores extrínsecos. En el sensor intrínseco, la fibra en sí misma es el elemento sensorio. En el caso del sensor extrínseco, la fibra se utiliza para transferir las señales de un sensor remoto a un sistema electrónico que procesa las señales.

Las fibras ópticas se pueden utilizar como sensores para medir: deformación, temperatura, presión, humedad, campos eléctricos o magnéticos, gases, vibraciones y otros parámetros. Su tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica les dan ciertas ventajas respecto a los sensores eléctricos.

Las fibras ópticas se utilizan como hidrófono para los sismos o aplicaciones de sonar. Se han desarrollado sistemas hidrofónicos con más de 1000 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabaja con láser y fibras ópticas.

Se han desarrollado sensores de fibra óptica para la temperatura y presión de pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.

Otro uso de la fibra óptica como sensor es el giróscopo de fibra óptica que usan numerosas aeronaves y el uso en microsensores del hidrógeno.

Los sistemas sensores fotónicos por fibra óptica tienen o pueden tener cuatro partes fundamentales:

-El sensor o transductor.
-El interrogador, que emite y recibe la señal óptica.
-El cable óptico.
-Acopladores, multiplexores, amplificadores o conmutadores ópticos (opcional).

Iluminación

Otro uso que se le da a la fibra óptica es la iluminación de cualquier espacio. En los últimos años las fibras ópticas han empezado a ser muy utilizadas debido a las ventajas que este tipo de iluminación representa:


*Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz, además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.


*Se puede cambiar el color de la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra.


*Por medio de fibras, con una sola lámpara se puede hacer una iluminación más amplia: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.




Comentarios

Entradas más populares de este blog

Transmisión y Recepción de Ondas (Visita Tv), ¿CÓMO SE TRANSMITE Y SE RECIBE UNA SEÑAL DE TV?

Problemas Fibra Optica

Padres de la Comunicación